ClearCell FX[®], a marker-independent process for enriching viable circulating tumour cells (CTCs) from melanoma patients' blood.

Simrah Mohammad, Sally Wood, Jonathan Tugwood, Karen Morris, Jackie Pierce, Romina Girotti, Kok Haw Jonathan Lim, Rebecca Lee, Nathalie Dhomen, Paul Lorigan, Richard Marais, Caroline Dive.

Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK

0

MANCHESTER INSTITUTE

MANCHESTER

The University of Manchester

1824

Introduction

- 0 Melanoma, a highly aggressive form of skin cancer, affects around 12,000 individuals annually in the UK. With a dismal 5-year survival rate for stage IV melanoma, novel insights into early detection and resistance emergence are vital.
- Circulating tumour cells (CTCs) represent a rare population of cells 0 which have shed from a primary tumour into the bloodstream and are responsible for initiating metastases at distant sites. CTCs can be obtained via a minimally invasive 'liquid biopsy' to aid the diagnosis, prognosis and monitoring of disease, as well as to study resistance to treatment
- The phenotypic heterogeneity of melanoma CTCs poses difficulties in isolating these cells using marker-dependent approaches and therefore other methods were sought.

- ClearCell FX^{*} is an automated microfluidic-based system which enriches for CTCs based on size. deformability and inertia in fluid flow. ClearCell FX° exploits the impact of inherent hydrodynamic forces, present in curvilinear microchannels, on CTCs.
- In this system, a sample of cells is pumped alongside a sheath fluid in a spiral biochip at optimal flow rates (x). Particles in the sample are subjected to inertial focusing forces - namely dean drag fractionation (DDF) and inertial lift focusing (v).

The combination of these forces separates larger cells (directed to the inner wall of the spiral) from the smaller cells (directed towards outer wall) in the sample (z).

ClearCell FX[®]

Conclusions

ClearCell FX* provides a robust and efficient method for enriching CTCs from patients' blood without affecting cell viability, and downstream functional analysis is uncompromised. Enriched cells can be assessed for the expression of melanoma markers and subsequently sequenced for confirming mutational status. We have also demonstrated the ability of ClearCell FX* enriched cells to generate CDX models which can be used to assess potential therapies.

This work is funded by Clearbridge BioMedics and CRUK (Simrah Mohammadis funded by Clearbridge BioMedics) To find out more email : <u>simrah.mohammad@manchester.ac.uk</u>. Lab webpage: http://www.cruk.manchester.ac.uk/Research/CRUK-MI-Groups/CEP/Hom

